Variances Are Not Always Nuisance Parameters
نویسندگان
چکیده
In classical problems, e.g., comparing two populations, fitting a regression surface, etc., variability is a nuisance parameter. The term “nuisance parameter” is meant here in both the technical and the practical sense. However, there are many instances where understanding the structure of variability is just as central as understanding the mean structure. The purpose of this article is to review a few of these problems. I focus in particular on two issues: (a) the determination of the validity of an assay; and (b) the issue of the power for detecting health effects from nutrient intakes when the latter are measured by food frequency questionnaires. I will also briefly mention the problems of variance structure in generalized linear mixed models, robust parameter design in quality technology, and the signal in microarrays. In these and other problems, treating variance structure as a nuisance instead of a central part of the modeling effort not only leads to inefficient estimation of means, but also to misleading conclusions.
منابع مشابه
Variances are Not Always Nuisance Parameters The 2002 R . A . Fisher
In classical problems, e.g., comparing two populations, fitting a regression surface, etc., variability is a nuisance parameter. The term ”nuisance parameter” is meant here in both the technical and the practical sense. However, there are many instances where understanding the structure of variability is just as central as understanding the mean structure. The purpose of this paper is to review...
متن کاملTESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کاملAn Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods
Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...
متن کاملBootstrap Methods for Testing Homogeneity of Variances
This paper describes the use of bootstrap and permutation methods for lhe problem of testing homogeneity of variances when means are not assumed equal or known. The melhods are new in this context, and nontrivial, since lhe composite null hypothesis involves nuisance mean parameters. They allow the use of normal-:'theory test statistics such as F = sUs~ without the normality assumption which is...
متن کاملAsymptotic approximation of nonparametric regression experiments with unknown variances
Asymptotic equivalence results for nonparametric regression experiments have always assumed that the variances of the observations are known. In practice, however the variance of each observation is generally considered to be an unknown nuisance parameter. We establish an asymptotic approximation to the nonparametric regression experiment when the value of the variance is an additional paramete...
متن کامل